At AllTheScience, we're committed to delivering accurate, trustworthy information. Our expert-authored content is rigorously fact-checked and sourced from credible authorities. Discover how we uphold the highest standards in providing you with reliable knowledge.

Learn more...

What is a Diprotic Acid?

A diprotic acid is a unique type of substance capable of donating two protons per molecule during chemical reactions. Think of it as a generous benefactor in the world of chemistry, offering not one, but two hydrogen ions to its surroundings. This dual-donation process plays a pivotal role in various biological and industrial processes. Wondering how this impacts the world around us? Let's explore further.
Victoria Blackburn
Victoria Blackburn

In chemistry, a diprotic acid is an acid that can donate two hydrogen atoms (H), or protons, per each molecule of the acid to a solution that is in an aqueous state, or in water. One of the most common examples of a diprotic acid is sulfuric acid, which has the chemical formula of H2SO4. Sulfuric acid can lose one hydrogen atom to form hydrogen sulfate (HSO4), or lose both hydrogen atoms to form a sulfate (SO4).

The term "diprotic" refers to the fact that the acid can release two hydrogen atoms or form two protons. "Di-" refers to the fact that two atoms can be released, and "protic" is used because the atoms that are released are protons. In some cases, dibasic is used to also describe these types of molecules as two bases are formed through the release of the hydrogen atoms. For example, hydrogen sulfate and sulfate are both bases, so two bases can be formed through the loss of one or two hydrogen atoms from sulfuric acid.

Scientist with beakers
Scientist with beakers

Diprotic acids are ionizable, or dissociate in the presence of water. The loss of the two hydrogen atoms from the diprotic acid does not take place at the same time. Each dissociation is a separate reaction due to the fact that the strength of the acid is different based on the number of hydrogen atoms attached to the molecule. The Ka value, or the acidity constant, gives the strength of an acid found in solution. With diprotic acids, the Ka value is different for each dissociation.

The titration curves of diprotic acids have a very distinct shape that clearly shows two different equivalence points. The equivalence points shown on a titration curve give the Ka value at each dissociation as the diprotic acid loses the first and then the second hydrogen atom to the water molecules. Depending on the diprotic acid being tested, the second dissociation may not occur completely meaning that some of the acid molecules will still contain one hydrogen atom.

There are both organic and inorganic, or biological and mineral, examples of diprotic acids that occur both naturally and as manmade substances. Sulfuric acid is an example of an inorganic acid, while the sour or taste of some fruits, such as apples, grapes and cherries, is due to malic acid, which is an organic diprotic acid. This acid occurs in most unripe fruit, but breaks down as the fruit ripens, so the fruit becomes less tart as it ages.

You might also Like

Discussion Comments


@titans62 - Technically, the terms organic and inorganic refer to whether or not something has carbon in it.

Conveniently enough, living things have carbon in them, and most of the acids they form end up having carbon in them, as well. If a person were to swallow sulfuric acid or any type of inorganic acid, there would probably be some adverse effects depending on the concentration.

It all just has to do with the nature of the elements involved and how they all react with each other and the cells in our bodies.


What does the article mean when it talks about organic and inorganic diprotic acids? I know organic usually refers to living things. Does that what it means in this case?


@stl156 - Those are all good questions. Acids and bases are, by definition, determined by where they are on the pH scale. Above 7 is a base, and below is an acid. What determines where a compound goes on that scale is determined by the collection of atoms. In the case of acids, hydrogen helps create the acidity. Without getting into any more detail, all elements with hydrogen are not acids, though.

Diprotic acids, and acids in general, have tons of important uses. Sulfuric acid mentioned in the article is very strong and is used a lot in paper production. It is able to dissolve plant tissues in the paper making process. It can also be put into fertilizer form for use on crops.

Hydrochloric acid, HCl, just has one hydrogen atom and is called a monoprotic acid.


I have a pretty limited knowledge of chemistry, so this may be a bad question, but what causes something to be an acid or base? I always thought that is was determined by the pH, but his article talks about the acid losing hydrogen atoms to make it a base. What is the difference?

Are there any special uses for diprotic acids? Where do they go on the pH scale? I seem to remember hearing about hydrochloric acid. Is this somewhere on the list of diprotic acids?

Post your comments
Forgot password?
    • Scientist with beakers
      Scientist with beakers