We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Melting Point?

By M.R. Anglin
Updated Jan 20, 2024
Our promise to you
AllTheScience is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AllTheScience, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Most people have seen an object melting, such as ice melting into water on a hot day. The melting point of an object is the point at which the solid object turns into a liquid. A more scientific way of saying it is that it is the point at which a pure substance's solid and liquid states are at equilibrium. This point is unique for pure substances, so scientists can use the temperature as one way to identify a particular substance.

When heat is applied to a solid object, the molecules within the solid start to move faster. As more heat is applied, the molecules in the solid continue to move until the attractive forces holding the molecules in a packed shape are overcome by the amount of energy the molecules have. At that point, the solid melts and the substance becomes a liquid. Even if more heat is applied to an object once it has started melting, the object will not change temperature until all the solid has become a liquid. No matter how much heat is applied to an ice cube, for example, the ice and water will remain at 32°F (0°C) until all the ice has melted.

Many people are familiar with the melting and boiling points of water. Water usually melts and freezes at 32°F (0°C) and boils at 212°F (100°C). The familiarity of water may make the melting points of other substances extreme by comparison. For example, the temperature at which carbon melts is 6,422°F (3,550°C), while mercury melts at -37.97°F (-38.87°C).

The melting point of a substance is often the same as the freezing point, but this isn't always the case. Some liquids are able to be supercooled. Supercooling a liquid is the process by which someone is able to cool a liquid past its freezing point without it turning into a solid. Such a liquid has to be pure because a single crystal, impurity, or sometimes even just movement will cause the liquid to crystallize. Should the supercooled liquid encounter such an impurity or movement, it will freeze almost instantaneously.

There are also objects that do not commonly have a melting point. One of the most famous and well used substances that does not have one at atmospheric pressure is carbon dioxide. Carbon dioxide's solid phase is commonly called "dry ice." At -109.3°F (-78.5°C), carbon dioxide jumps from its solid phase to its gas phase in a process called sublimation. Carbon dioxide only occurs as a liquid at pressures that exceed five atmospheres.

AllTheScience is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

By umbra21 — On Aug 31, 2012

One of the cool things that they are bringing out for kitchens soon is a dry ice machine that you can use to make really unique desserts. I saw it demonstrated on a show. I guess because the carbon dioxide goes from gas to solid without a liquid phase, dry ice gives off that vapor that looks like steam, so all the people demonstrating and trying the desserts were breathing out big billowing breaths, which the kids really liked.

But mostly they were demonstrating how you could freeze things like custards so that they were crunchy on the outside but still liquid in the middle. I guess that's because it happens so fast that the center doesn't reach the freezing point.

By browncoat — On Aug 31, 2012

@indigomoth - Actually it does happen in nature. It's one of the dangers of flying through rain clouds that they contain drops of supercooled water which might crystallize on the plane wings when it flies past. So, in that case, I guess it's more a matter of figuring out how to stop that from happening than anything else.

Although, actually, it sounds difficult and maybe it is with other kinds of liquid, but you can do it in your own freezer if you're careful. Or you can do it to demonstrate how melting and freezing points work to students. There are plenty of tutorials online. Mostly you just need to ensure that your water is very pure and cold for it to work. Then you can make it instantly freeze and impress your friends (if they are easily impressed!).

By indigomoth — On Aug 30, 2012

I actually didn't realize that was the definition of a supercooled liquid. I had heard the term before, but just assumed it was a substance that could be naturally cooled to a very low temperature before it froze solid.

I feel like I've heard the term used a fair amount but when I looked up the applications of supercooled liquids it seems like they are mostly used to make slushy drinks! It seems like a pretty amazing and precise process to be used in making novelty beverages.

AllTheScience, in your inbox

Our latest articles, guides, and more, delivered daily.

AllTheScience, in your inbox

Our latest articles, guides, and more, delivered daily.