We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Peroxidase?

Karyn Maier
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A peroxidase is one of a number of enzymes that act as catalysts to allow a variety of biological processes to take place. Specifically, they promote the oxidation of various compounds using naturally occurring peroxides, especially hydrogen peroxide (H2O2), which are reduced, forming water. Peroxides are created as byproducts of various biochemical reactions within organisms, but can cause damage as they are oxidizing agents. Peroxidases break these compounds down in to harmless substances by adding hydrogen, obtained from another molecule — known as a donor molecule — in a reduction-oxidation (redox) reaction in which the peroxide is reduced to form water, and the other molecule is oxidized. There are a large number of these enzymes, and they are found in plants and animals, including humans.

Structure and Properties

Like all enzymes, peroxidases are very large, complex molecules with complicated shapes involving multiple folds. They come in a variety of types, some of which can use a wide variety of donor molecules and reduce a wide range of peroxides, and some of which are much more specific. Enzymes have an “active site,” which is the part of the molecule where the reaction takes place. This may be in an easily accessible part of the molecule, or it may be tucked away in a fold, where it can only be reached by a molecule of exactly the right shape. Horseradish peroxidase (HRP) is an example of an enzyme that can use a wide variety of donor molecules and peroxides.

Role in Biological Systems

A number of peroxidases are found in plants, where they may help minimize damage caused by stress factors or insect pests. When plants are subjected to stress — such as drought or high temperatures — or to attack by pests, this tends to result in the release of reactive oxygen species (ROS). These are forms of oxygen, or compounds of this element, including hydrogen peroxide, in which the oxygen is very reactive, and can damage or kill cells. It is thought that peroxidases remove ROS, helping prevent damage.

In humans, and other mammals, a group of these enzymes called glutathiones, which contain the element selenium, are found both within and outside cells. Some of these catalyze reactions involving H2O2, while others use peroxide compounds of lipids (fats and oils). Their main role seems to be to remove these potentially harmful oxidizing agents. Peroxidases in the saliva also enable redox reactions between H2O2 and chemicals called thiocyanates, producing compounds that can kill potentially harmful microorganisms. Thyroid peroxidase releases iodine from nutrients to form essential thyroid hormones.

One unusual use of these enzymes occurs in a group of insects known as bombardier beetles. They have a chamber containing a mixture of hydrogen peroxide and chemicals called hydroquinones. When threatened, they mix these with peroxidases, which catalyze a redox reaction in which a lot of heat is released, with the resulting liquid ejected explosively at 212°F (100°C). It is a very effective way of deterring predators.


The study of plant-based peroxidases, such as HRP derived from horseradish root, has furthered the fields of molecular biology and immunohistochemistry, also known as histochemistry. In the former, HRP is used to detect peroxidase antibodies that may indicate an autoimmune condition that causes thyroid problems. It is also used to measure serum or urine levels of glucose. As a diagnostic tool in pathology, HRP has the ability to target and bind to certain biomarkers found in cancerous cells and produce a stain reaction when introduced to biopsy samples. Aside from being readily available and inexpensive to obtain, HRP is considered particularly useful for such tests due to being highly stable and open to reacting with a variety of donor molecules.


Investigation into the nature of these enzymes was driven by experiments on the decomposition of hydrogen peroxide by the French baron and chemist, Louis Jacques Thénard in the mid-19th century. Having been the first to produce the compound in a laboratory, he later found that many animal and plant materials could convert it into water and oxygen, and that the same sample of material could do this many times over. This was curious, as if it was a simple chemical reaction between the peroxide and something in the organic material, it should stop once the active agent was used up. This led to the discovery of catalysts — substances that enable a chemical reaction without actually participating in it — and, specifically, peroxidases.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Karyn Maier
By Karyn Maier
Contributing articles to All The Science is just one of Karyn Maier's many professional pursuits. Based in New York's Catskill Mountain region, Karyn is also a magazine writer, columnist, and author of four books. She specializes in topics related to green living and botanical medicine, drawing from her extensive knowledge to create informative and engaging content for readers.
Discussion Comments
By anon924145 — On Jan 02, 2014

I really wish this was more specific about the structure and its activity.

By TheDoctor — On Apr 05, 2011

@gamerdan -- As far as tests go, it's pretty accurate. In fact, most of the the people that receive positive results on a thyroid peroxidase test (somewhere between 70 -90%) do indeed have chronic thyroidosis, however there are a some auto-immune disorders that can cause a false positive as well. Lupus and rheumatoid arthritis are probably the most common culprits for this.

By GamerDan — On Apr 04, 2011

So how accurate is a perioxidase test, exactly? My cousin is going in for an HRP test because of her thyroid, and I'm just trying to learn as much about it as possible before she gets her results back. Does anybody have any information about this?

Karyn Maier
Karyn Maier
Contributing articles to All The Science is just one of Karyn Maier's many professional pursuits. Based in New York's...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.