We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Zymogen?

By K.B. Schnurman
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A zymogen is the inactive precursor of an enzyme. The molecule is composed of amino acids strung together into a peptide. When the zymogen is in the presence of an enzyme specifically designed to breakdown peptides, called a protease, some of the amino acids are removed. This cleavage renders the zymogen a functional enzyme by changing the shape of the peptide and forming the active site where enzymatic action will occur. For this reason, a zymogen is also called a proenzyme.

The active site is the key feature of an enzyme. It is the place where the molecule that the enzyme acts on, called the substrate, binds and undergoes chemical change. An enzyme’s active site and overall function is dependent on the shape of the enzyme. This is determined by four structural levels.

The primary structure of an enzyme is simply the sequence of amino acids. The secondary structure represents how the peptide folds and twists on itself due to interactions between the amino acids. Secondary structures include coil-like alpha helices and beta pleated sheets, which resemble accordion folds.

The tertiary structure describes the overall folding of the whole peptide, with the secondary structures folding upon themselves to form a globular ball, the protein’s active conformation. Some proteins have a quaternary structure that describes how two or more peptides combine to form a complex protein. For example, hemoglobin, which carries oxygen in the blood, is composed of four individual peptides that are linked to create a functional molecule.

The body typically secretes zymogens rather than active enzymes because they can be stored and transported safely without harm to surrounding tissues, and released when conditions are favorable for optimal activity. For example, pepsinogen is secreted in the stomach and cleaved to form pepsin, an enzyme that breaks down the proteins ingested as food. The highly acidic conditions of the stomach actually induce cleavage of pepsinogen and promotes the activity of pepsin. Once digestion moves to the small intestine, however, the drastic change in pH inactivates pepsin and two more zymogens are released.

Chymotrysinogen and trypsinogen, also protein digesting enzymes, are key components of the digestive juice released by the pancreas. They travel through the main pancreatic duct into the duodenum of the small intestine where they are then cleaved into their active forms. By releasing zymogens instead of the active enzymes chymotrypsin and trypsin, the pancreas avoids self-digestion.

Other zymogens in the body include prothrombin and fibrinogen, both essential to clot formation. Both exist as plasma proteins. When they are needed to stem blood loss due to tissue damage, these zymogens are readily available, not having caused any damage to the circulatory system in which they are stored.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.