We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Solomonoff Induction?

Michael Anissimov
By
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Solomonoff induction is a mathematically rigorous, idealized form of induction, that is, predicting what will happen in the future based on prior experiences. It is a part of algorithmic information theory. This induction scheme is theoretically optimal, i.e., given enough data, it will always be able to assign probabilities to future events with the maximum possible accuracy allowed. The only problem with Solomonoff induction is that it is incomputable -- that is, it would require a computer with infinite processing power to run. However, all successful inductive schemes and machines -- including animals and humans -- are approximations of Solomonoff induction.

Every verbal argument containing advice for better induction, to the extent that it actually works, works by coaxing the listener into modifying his or her inductive strategy in such a way that it better approximates the theory. The idea that induction can be mathematically formalized in this way is quite profound, and many generations of logicians and philosophers said it couldn't be done. The theory grew out of work by Ray Solomonoff, Andrey Kolmolgorov, and Gregory Chaitin in the 1960s. Their underlying motivation was to formalize probability theory and induction using axioms, in the same way that algebra and geometry have been formalized. The theory is based on an inductive rule called Bayes' theorem, which describes a precise mathematical way to update beliefs based on incoming data.

One weakness in Bayes' theorem is that it depends on a prior probability for a certain event. For example, the probability of an asteroid impacting Earth in the next 10 years can be given on the basis of historical data about asteroid impacts. However, when the sample size of prior events is low, such as the number of times a neutrino has been detected in a neutrino trap, it becomes very difficult to predict the likelihood of the event happening again based solely on past experience.

This is where Solomonoff induction comes in. Using an objective measure of complexity called Kolmogorov complexity, the theory can make an educated guess about the probability of some future event occurring. Kolmogorov complexity is based on a principle called Minimum Description Length (MDL), which assesses the complexity of a string of bits based on the shortest algorithm that can output that string. Although Kolmogorov complexity initially applied to bitstrings only, it can be translated to describe the complexity of events and objects.

Solomonoff induction integrates Kolmogorov complexity into Bayesian reasoning, giving us justified priors for events that may never even have happened. The prior probability of an arbitrary event is judged based upon its overall complexity and specificity. For example, the probability of two random raindrops in a storm hitting the same square meter is fairly low, but much higher than the probability of ten or a hundred random raindrops hitting that square meter.

Some scientists have studied the theory in the context of neuroanatomy, showing how optimal induction is an organizing principle in the evolution of animals that need accurate induction for survival. When true Artificial Intelligence is created, the principles will be a likely inspiration underlying its construction.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov , Writer
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.

Discussion Comments

Michael Anissimov

Michael Anissimov

Writer

Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.