We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What are Aromatic Compounds?

By M.J. Casey
Updated Feb 19, 2024
Our promise to you
AllTheScience is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At AllTheScience, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Aromatic compounds comprise a class of hydrocarbons that include a six-member, unsaturated carbon ring in which the pi bond valence electrons are completely delocalized or conjugated. These compounds are stable and abundant in both natural and synthetic forms. The simplest of the aromatic compounds is benzene (C6H6), a flammable carcinogen, yet an industrially important chemical. The name aromatic is based on the strong aromas of many of the larger aromatic compounds. Diamonds and graphite, while not considered aromatic compounds, demonstrate delocalized electron sharing over very long atomic distances.

The carbon-carbon covalent bond, the basis of organic chemistry, shares two electrons between two adjacent carbon atoms as a single bond, or four electrons between two carbons in a double bond. A conjugated system has a series of alternating single and double bonds that can be represented by two or more Lewis structures. Conjugation or resonance occurs when there available p-orbitals, or d orbitals in larger molecular weight compounds, in which to spread the available valence electrons. Conjugation can occur in linear, branched, or cyclic configurations between bonds of carbon, oxygen or nitrogen atoms.

Aromaticity occurs when the electrons in the carbon chain are even more delocalized by forming a six-carbon ring with the equivalent of three each of alternating single and double bonds. If benzene behaved as a molecule with three double bonds, chemists would expect the molecule’s double bonds to be shorter than the single bonds, but benzene’s carbon bond lengths are all equal and coplanar. Benzene and other aromatic compounds do not undergo addition reactions as alkenes do. Alkenes add groups across their double bonds, while aromatic compounds substitute a hydrogen atom for a group.

The energy released when cyclohexene is hydrogenated to cyclohexadiene by adding hydrogen to the double bond is 28.6 kcal per mole. Hydrogenation of cyclohexadiene with two double bonds releases 55.4 kcal/mole or 27.7 kcal per mole H2. Benzene releases 49.8 kcal per mole or 16.6 kcal per mole H2 upon complete hydrogenation. The remarkably low value is a measure of the stability of the aromatic structure.

Chemists explain benzene’s planar morphology, equal carbon bond lengths and the low energy of its double bonds by concluding the 2p orbitals are distributed across all six carbons. The delocalized pi orbitals are visualized as forming a torus above and below the plane of the carbon skeleton ring. This configuration explains all of its characteristics and supports the concept of shared pi orbitals in other conjugated systems.

Aromatic compounds often exert a vapor pressure, and many of the gaseous molecules are detectable by human noses. Cinnamon bark, wintergreen leaves and vanilla beans all have aromatic compounds humans can smell. Synthesis of these or similar compounds also is the basis of artificial food flavoring.

Some very interesting aromatic compounds consist of polycyclic structures sharing one or more sides of the six-member carbon ring with an adjoining carbon ring. Naphthalene (C10H8) has two joined benzene rings; three rings joined linearly is called anthracene (C14H10), while six benzene rings in a circle, with a very high level of electron delocalization, is called hexhelicene (C26H16). With the increase in the number of rings, the hydrogen-to-carbon ratio decreases, the material becomes more stable, harder, and the melting point increases. As the ratio approaches zero, the compound is essentially another form of carbon. Graphite consists of sheets of delocalized ring structures with sp2 hybridized carbon atoms and diamonds are hybridized sp3 in three-dimensional interconnecting cage-like structures all due to aromaticity.

AllTheScience is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

AllTheScience, in your inbox

Our latest articles, guides, and more, delivered daily.

AllTheScience, in your inbox

Our latest articles, guides, and more, delivered daily.