At AllTheScience, we're committed to delivering accurate, trustworthy information. Our expert-authored content is rigorously fact-checked and sourced from credible authorities. Discover how we uphold the highest standards in providing you with reliable knowledge.

Learn more...

What Is a Carbanion?

A carbanion is a fascinating species in organic chemistry, characterized by a carbon atom bearing a negative charge. This occurs when carbon has an extra electron, making it highly reactive and eager to bond with other atoms. Understanding carbanions unlocks a world of chemical reactions. How do these charged particles shape the molecules around us? Let's delve deeper.
E.A. Sanker
E.A. Sanker

A carbanion is an anion, a negatively charged molecule, that includes a carbon atom with a negative charge. The carbon atom's charge is caused by a lone pair of electrons that are unshared, as opposed to its three other pairs that are bonded with other atoms. Carbanions are known as reactive intermediates due to their instability and tendency to form stable compounds rather than remaining in original form. They are studied as part of organic chemistry.

The negative charge of the carbanion causes its to react with other compounds as a nucleophile, meaning it readily donates its electrons. It bonds to another atom by donating both electrons — in this case, the lone pair. This action defines the carbanion as a Lewis base, as opposed to a Lewis acid, which would accept a lone pair of electrons in a chemical bond.

Scientist with beakers
Scientist with beakers

Structurally, carbanions have a tetrahedral molecular geometry if the lone pair is counted. This means that carbon, the central atom, is symmetrically surrounded by the electron orbitals in the shape of a tetrahedron. If only the three bonds are included in the geometry, the molecule is trigonal pyramidal, with the carbon atom at the apex of the pyramid, the three bonded atoms forming the base, and the lone pair floating on top.

Depending on the substituents that are bonded to the carbon atom, the carbanion structure can invert, flipping the molecule. Usually the energy barrier that must be exceeded for carbanion inversion to take place is fairly low, and the reaction easily proceeds. Various factors can raise this energy barrier. For example, the ring structure of cyclopropyl makes inversion difficult, and carbanions in such structures behave more stably than they would in a more open system.

Electronegativity also plays a role in stabilizing carbanions. An atom or group that is electronegative tends to attract electrons. When a carbanion is surrounded by electronegative atoms, its lone pair is attracted to them and it becomes stabilized. This transmission of charge is more broadly known as the inductive effect.

Carbanions are important in organic chemistry and are seen as intermediates in many reactions. They are involved in the formation of Grignard reagents, which are organic derivatives of magnesium that behave as carbanions. The Grignard reaction is an example of organometallic chemistry, the study of compounds in which a metal is bonded to a carbon. In these reactions, the nucleophilic properties of carbanions are used to attack and modify other compounds to create chemical products.

You might also Like

Discussion Comments


Their stability does not depend on the number of bonds they make. There are some factors, to be specific: actually they work only in case of carbocation.

1. Resonance -- if carbocation is making a compound aromatic then it is the most stable carbocation.

2. Hyper conjugation/ability to attract sigma bonds of sp3 hybridised nearby carbon atom.

3. Inductive effect I positve effect stabilises and I negative effect destabilizes.


@feruze-- Carbocation and cabanion are different things.

Carbocation is an ion (positively charged), not an anion like carbanion. A carbocation has a carbon atom with three bonds.

You could sum it up by saying that carbanion is a negatively charged carbon atom and carbocation is a positively charged carbon atom.

What they do have in common is that they are both unstable. But the stability of carbocations can change depending on the number of bonds. So stability of carbanions can be less than carbocations' depending on the bonds.


@feruze-- Yes, carbanions are 'intermediates,' meaning that they can form new bonds and structures.

Petrochemicals that we produce today wouldn't be possible without carbanions. Scientists can take molecule structures we already know and make new ones out of them. This is basically the entire concept behind producing medications and many other things.

Of course, the whole of organic chemistry is responsible for this, but carbonion is definitely one of the most used structures because of its function as an intermediate. I think this is what your teacher is talking about.


Can you tell me what the role of carbanion is when it comes to petrochemical production?

My teacher is asking what the use of carbanion is in applicability and what it allows us to produce. Does this have something to do with carbanion being an intermediary molecule?

And what does carbocation mean? Is it about carbanion?

Post your comments
Forgot password?
    • Scientist with beakers
      Scientist with beakers