We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Beam Calculation?

By D. Poupon
Updated: May 21, 2024

Beam calculation is the measurement of the stress and deflection of a structural beam when a given load is applied to it. Many factors contribute to a beam’s capacity to resist bending, such as characteristics of the beam, the load and the supports. Calculating the load displacement of a single beam using the Euler-Bernoulli beam equation is straightforward, but in most practical applications, beam software is used. Beam calculations are used to ensure safety and avoid overbuilding in a variety of disciplines such as construction and aeronautics.

It is necessary to calculate beam load capacity in order to construct structures with the lightest and most inexpensive materials while fulfilling safety requirements and maintaining the structure’s aesthetic quality. The entire discipline of structural engineering is devoted to this analysis and design, ensuring that roofs do not collapse under the weight of snow, that underground parking garages are safe when traffic drives overhead and that skyscrapers built along fault lines meet earthquake safety requirements. Beam calculation also has its applications in mechanical engineering, when testing the load resistance of individual parts of a machine, such as the load that an airplane wing can withstand before developing potentially dangerous stresses. Finally, architects must consider beam deformation when building and renovating houses with post and beam construction and when considering the visual impact of sagging floors, roofs and balconies.

One of the most important factors when calculating a beam’s load bearing capacity is the choice of materials. Typically, beams are made out of wood, steel, reinforced concrete or aluminum. Each material has a different tendency to deform elastically, called the modulus of elasticity, which refers to the material’s ability to spring back into place. At its yield point, the material will deform plastically, maintaining the deformation after the applied force is removed.

The cross-sectional shape of the beam is the second characteristic that is considered in beam calculation. Beams might be rectangular, round or hollow, as well as having many types of flanking, such as I-beams, Z-beams or T-beams. Each shape has a different moment of inertia, otherwise known as second moment of area, which predicts a beam’s stiffness.

The force per unit length is another parameter used in beam calculation, and it is dependent on the load type. Dead loads simply are the weight of the structure, and imposed or live loads are the forces that the structure will be exposed to intermittently, such as snow, traffic or wind. Most loads are static, but particular attention must be paid to dynamic loads, earthquakes, waves and hurricanes, which repetitively apply force for an extended duration. A load might be distributed, typically uniformly or asymmetrically, such as snowfall or a pile of dirt. It also might be concentrated at a point, centrally or at various intervals.

The boundary conditions for beam calculation depend on the beam support type. A beam might simply be supported on both ends, like a floor joist between two load bearing walls. It might be cantilevered, or supported on one end, like a balcony or airplane wing. The boundary conditions apply to all points along the beam's length.

The relationship between a beam’s deflection and a static load is described by the Euler-Bernoulli beam equation. Another equation, the Euler-Lagrange beam equation, describes this relationship for a dynamic load, but because of the complexity of its application, static approximations typically are used. The deflection, bending moments and shear force of a beam given an applied load can be derived. In a practical setting, load charts are used to summarize this information, and they list common materials that fulfill the safety requirements for a known load. For more complicated applications, beam calculators are readily available on company websites and as add-ons for computer aided design (CAD) software.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.