We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Physics

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Quantum Electrodynamics (QED)?

Michael Anissimov
By
Updated: May 21, 2024
Views: 9,225
Share

Quantum electrodynamics (QED) is the quantum field theory explaining how electrically charged particles interact with each other through the exchange of photons (light "quanta", or little packets of light). Photons, and therefore interactions in a QED, propagate at the speed of light. QED is referred to as a gauge theory, with a mathematically specified gauge field representing the electromagnetic force. The theory also explains magnetism, as magnetism and electricity are two manifestations of the same underlying force, electromagnetism.

The theory of QED is one of the most well-verified theories on Earth, sometimes giving precise results to ten decimal places, and was the first quantum field theory to be called consistent and complete. One prediction made by QED was found to be accurate up to .0038 parts per million, probably the most precise and accurate physical prediction ever made. Computing correct solutions to the behavior of systems with interacting parts or larger electron orbitals gets exponentially harder as the number of components increases, with some calculations requiring literally decades of work to compute and verify.

Out of the four forces of nature — electromagnetism, weak nuclear force, strong nuclear force and gravity — electromagnetism is probably the easiest to explain rigorously, although explaining it fully took many hundreds of scientists decades of work. The theory was developed to satisfaction in the late forties, thanks to the independent work of Sin-Itiro Tomonaga, Julian Schwinger and Richard Feynman. They received the 1965 Nobel Prize in Physics for their effort.

If electromagnetism were the only force of nature operating in the universe, QED would offer a complete account of its exact nature. However, it isn't, and the search continues for a quantum field theory which integrates all four forces. Furthermore, solving equations in QED is very difficult, more difficult than conventional quantum mechanics problems, as QED is a generalization of quantum mechanics to special relativity. The images most famously associated with QED are Richard Feynman's Feynman diagrams, which use straight and squiggly lines to analyze the different ways in which particles exchange photons to interact physically.

The theory of QED still produces mathematical infinities in certain contexts, and while many of these problems have been resolved, they persist at a certain level. Ad hoc renormalization algorithms have been developed to smooth over these theoretical imperfections. These infinities suggest that QED is not by any means a final theory, leaving the future open to the discovery of a more accurate theory, one which views electromagnetism in the context of the other three forces of nature.

Share
All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
By allenJo — On Feb 20, 2012

@NathanG - I actually think QED goes deeper than that. I don’t think it explains the light puzzle however. What I am more curious about is how electromagnetism relates to gravity. They seem to behave in similar manners.

Perhaps if scientists can somehow figure out how the two relate, then they can build an antigravity device. The way that I see it, gravity behaves like a magnet anyway.

If we can figure out a way to “reverse polarity,” then instead of gravity pulling things down, it would push things away, which would be the basis of the antigravity device. Perhaps only a unified field theory would lead us down this path however.

By NathanG — On Feb 20, 2012

@everetra - Does QED explain away the old conundrum about how light can be a particle and a wave at the same time? That was one of the first mysteries I’ve ever read about light: it’s both a wave and a particle, and both of these classifications, supposedly, are contradictory.

Presumably scientists have no way of reconciling the two, but perhaps QED can explain it since it deals with photons of light? I don’t know if it can; I’m just throwing it out there.

By everetra — On Feb 19, 2012

@hamje32 - I too have a smidgeon of understanding in this subject. I’ve heard weird illustrations of how particles behave at the quantum level. One example is that particles can be connected to each other in some weird way, so that if one particle spins, the other particle spins with it, in the same direction.

I’ve even heard that particles behave differently if they are being “watched” by an outside observer like a scientist than if they are not being watched! That certainly makes no sense but it seems to be true.

By hamje32 — On Feb 18, 2012

I am certainly no expert in quantum physics, but I heard that Einstein spent the better part of his life in search of a unified field theory. He never succeeded obviously.

The little that I’ve heard and read about quantum mechanics is that it seems to operate in a manner differently than “regular” physics. In other words, what’s true in the quantum world isn’t necessarily true in the outer physical world.

This is one of the things that makes creating a unified “theory of everything” so hard to put together. I am sure, however, that eventually scientists will stumble upon it. It will just take some more time and research in the field of quantum mechanics.

Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology...
Learn more
Share
https://www.allthescience.org/what-is-quantum-electrodynamics.htm
Copy this link
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.