We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Quantum Uncertainty?

Michael Anissimov
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Quantum uncertainty, or more formally, the Heisenberg uncertainty principle, is a finding in quantum physics that states that one cannot simultaneously know both the exact position and exact momentum of a single particle. The uncertainty principle also gives mathematically precise (quantitative) confidence limits for pairs of measurements. Essentially, the more precisely you want to know one value, the more accuracy you must sacrifice in your measurement of the other.

Because of its association with the quantum mechanics revolution, quantum uncertainty has a lasting place in popular culture, where it is often misinterpreted. Quantum uncertainty in movies and films is sometimes used incorrectly to refer to large objects, when it really only applies to particles. Also, the idea of quantum uncertainty is often presented in a mysterious way, without the mention that the concept goes hand in hand with precise quantitative confidence bounds, which are not so mysterious.

The notion of quantum uncertainty caused a ruckus in the early 20th century, when physicists were trying to work out the particulars of quantum theory through conflicting interpretations. Neils Bohr and many other physicists advocated the Copenhagen interpretation, which states that the universe is fundamentally fuzzy at the lowest level, described by probability distributions rather than deterministically linked, well-defined states. Werner Heisenberg, who derived the uncertainty principle from the mathematical structure of quantum theory, also advocated the Copenhagen interpretation. Albert Einstein, however, did not, famously saying "God does not play dice".

The theory of quantum uncertainty, despite being packaged with mathematically precise confidence bounds, truly is quite mysterious. There are still disagreements in the physics community about whether the Copenhagen interpretation follows inevitably from quantum certainty. The contemporary alternative to the Copenhagen interpretation is the Many Worlds interpretation of quantum mechanics, which holds that reality actually is deterministic.

In the context of the great success of Newtonian mechanics for more than a century prior, physicists were greatly reluctant to give up deterministic theories without incredibly compelling evidence. So they attempted to come up with "hidden variable" theories, which tried to explain away quantum uncertainty as a high-level property that emerges from more fundamental deterministic interactions. However, a finding called Bell's inequality found that local hidden variable theories could not be used to describe quantum uncertainty without postulating faster-than-light correlations between all particles in the universe. However, nonlocal hidden variable theories are still proposed to explain a deterministic foundation behind quantum uncertainty.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
By anon991389 — On Jun 17, 2015

Quantum entanglement is a "faster than light travel connection" between particles. The physics of it is rather simple and anyone of average intelligence can comprehend it. The principle behind it is that which would be employed in instantaneous "light-year-distance" communications. Making the devices would be complex but the principle is simple. When the theory is proven, we could move onto matter transport.

Understanding gravity and how the universe functions helps. First you must understand the how and why these particles even have this connection. I doubt very much that the boys in the lab truly understand what they're dealing with. When it comes to matter transport, it would not be dematerialize, rematerialize or a copy. It would be matter transport. Happy trails.

By anon20486 — On Nov 01, 2008

Newtonian physics has served us extremely well for a long time for big objects-heavenly bodies and gross mechanics. However, it did not deal with the extremely minute forces that are inside the atom.

If you think quantum theory is hard to understand, try the string theory. Or have a go at "A Brief History of Time" by Steven Hawkings. I have been over both of these more than once, but still have trouble understanding either. As far as telling someone else about them coherently, forget it.

Sometimes I think that a theory that is so hard to understand or to write about may not be correct. On the other hand, it may be that some minds are just too limited to be able to get it. Everyone is not equal-brain wise. And not equal in a lot of ways and no amount of human lawmaking will change that.

By anon20482 — On Nov 01, 2008

What does the confirmation of quantum entanglement suggest with regard to the many world's theory ?

Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated All The Science contributor and brings his expertise in paleontology, physics, biology...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.