We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Spectroscopy?

By Brendan McGuigan
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Spectroscopy is the study of light as it breaks into its constituent colors. By examining these different colors, one can determine any number of properties of the object being studied, as the colors of the light reflect the energy states. More technically, spectroscopy looks at the interaction between any matter and radiation. It is used to analyze compounds in chemistry, to determine what different elements make up something, and is also used in astronomy to get insight into both the composition and velocities of astronomical bodies.

One can divide spectroscopy into many sub-disciplines, depending on what is being measured, and how it is being measured. Some major divisions include mass spectrometry, electron spectroscopy, absorption spectroscopy, emission spectroscopy, x-ray spectroscopy, and electromagnetic spectroscopy. There are many other types of spectroscopy as well, however, including those that look at sound as it scatters, or electrical fields.

In x-ray spectroscopy, for example, x-rays bombard a substance. When they hit it, the electrons in the inner shells of the atoms are excited, and then de-excite, emitting radiation. This radiation comes out at different frequencies, depending on the atom, and there are slight variations depending on the chemical bonds present. This means that the radiation can be examined to determine what elements are present, in what quantities, and what chemical bonds exist.

In astronomy, spectroscopy can be used to determine a wide range of things about the composition of stars and other celestial bodies. This is because light is a wave, and different energies have different wavelengths. These different wavelengths correlate to different colors, which can be observed using telescopes. Spectroscopy involves looking at the different colors, and using what is known about the energies of different processes and elements to build a map of what is happening thousands of millions of light years away.

There are two main spectra of light that are looked at in astronomical spectroscopy: continuous and discrete. A continuous spectrum has a wide range of colors that are relatively continuous. A discrete spectrum, on the other hand, has certain spikes of very bright or very dark lines at specific energies. Discrete spectra that have bright spikes are called emission spectra, while those that have dark spikes are called absorption spectra.

The continuous spectra are emitted by things like stars, as well as things on earth like fires, animals, or light bulbs. Because energy is being released across the spectrum of wavelengths, it appears rather continuous, although there may be peaks and troughs within the spectrum. Not all of this light, of course, is visible to the naked eye, much of it exists in the infrared or ultraviolet range.

Discrete spectra, on the other hand, usually are caused by something happening by a particular atom. This is because, due to certain rules of quantum mechanics, electron clouds have a very specific energy, depending on the associated atom. Every single element has only a handful of energy levels it can have, and nearly all of them are easily identifiable. At the same time, these elements always want to return to these basic energy levels, so if they get excited in some way, they emit the extra energy as light. That light has the exact wavelength one would expect for that atom, allowing astronomers to view the light peak and recognize what atoms are involved, helping to unlock the secrets of the composition of the universe.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.