We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is the Difference Between Volume and Surface Area?

Tricia Christensen
Updated May 21, 2024
Our promise to you
All The Science is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At All The Science, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Volume and surface area are two related concepts in the study of mathematics. They’re both important to understand, but equally important is understanding how they differ and what they mean. This is especially the case when it comes to computing the volume and surface areas of a prism or a cylinder.

If you think of wrapping a present in a box, you can get a good sense of how volume and surface area differ. First, you have to consider the size of the box, when you consider the size of the present. How much interior space does your box need to have so a present will fit? The measurement of the box’s capacity, how much it will hold, is its volume. Next you have to wrap the present. The amount of wrapping paper, which will cover the exterior of the box, is a very different calculation than the capacity of the box. You’ll need a separate measurement or some good guessing, to figure out the sum of the sides of all the surfaces or the surface area.

Volume of a square or rectangular box is pretty easy to compute. Simply multiply height times length times width to get the measurement. With a square it’s even easier, you merely cube one side’s length, since they all measure the same. If the side length is a, the formula is a x a x a or a3. When you are comparing volume and surface area, you’ll note a very different formula. You need to get the area of each face, and then add the areas of all faces together. With a square prism or cube, you’d essentially compute the area a x a or a2, multiplied by 6 (6a2). When you’re working with a rectangular prism, you’ll have to the area the of 3 pairs of equal sides, which needed to be added together to determine surface area.

Work on volume and surface area are differ a little when you are trying to calculate the area of a cylinder. The formula for a volume of a cylinder is the area of one circular face multiplied times the height of the cylinder. It reads: πr2 x h, or pi times the radius squared times height. Getting the surface area of the cylinder is a little trickier since the circular portion is essentially one continuous face. Computing surface area of a cylinder means computing the lateral area of this face.

Lateral area formula is the following πr2r or πd (pi times the radius doubled or pi times the diameter), multiplied to the height, πr2r x h. This is essentially the circumference of one circle times the height of the cylinder. To compute the entire formula you also need to add in the top and bottom circular faces’ areas. Since in a cylinder these are equal, the formula is 2 πr2. This calculation is then added to the lateral area to compute the whole surface area in the following expression:

πr2r x h + 2πr2 = lateral area.

You can also view difference between volume and cylinder as a difference between what is inside and can be contained and the exterior of a three-dimensional object. These are valuable differences to understand in many applications, such as construction, engineering, or even present wrapping. When children complain that math is useless outside of math class, you might point out to them that knowing the difference between volume and surface area meant they got a very nicely wrapped gift for their birthday.

All The Science is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Tricia Christensen
By Tricia Christensen
With a Literature degree from Sonoma State University and years of experience as a All The Science contributor, Tricia Christensen is based in Northern California and brings a wealth of knowledge and passion to her writing. Her wide-ranging interests include reading, writing, medicine, art, film, history, politics, ethics, and religion, all of which she incorporates into her informative articles. Tricia is currently working on her first novel.
Discussion Comments
By goldapp — On Jan 26, 2015

For nanomaterials, if has a small surface area, will has a large pore volume; if has a big surface area, will has a small pore volume. Can use V-Sorb 2800P static volumetric principle to test it.

By anon939143 — On Mar 12, 2014

The volume of a cylinder=pi r square h, so half a cylinder's will be pi r 2 h/2.

By Mammmood — On May 18, 2011

@NathanG - In that case the volume is half. My understanding is that to come at the final number you would take half of the area of the cylinder’s base and multiply it by the height.

By NathanG — On May 17, 2011

I understand cylinder volume but what about if I have half a cylinder? How do I calculate that? I know it sounds weird, but this is not an uncommon scenario in engineering applications.

By nony — On May 15, 2011

One of the most practical applications for volume of sphere calculations is in astronomy. You use information about a planet's volume to calculate its density.

Density is basically mass divided by volume. Once you have that information, you can make comparisons between planets. Some planets will be less dense than others, for example, because they are made primarily of gas, while other planets are solids (like Earth). Regardless, you need to know volume to make the final calculation.

Tricia Christensen
Tricia Christensen
With a Literature degree from Sonoma State University and years of experience as a All The Science contributor, Tricia...
Learn more
All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.

All The Science, in your inbox

Our latest articles, guides, and more, delivered daily.